bayangan titik 7,3 oleh rotasi 0,45 adlh
Matematika
brenden2
Pertanyaan
bayangan titik 7,3 oleh rotasi 0,45 adlh
1 Jawaban
-
1. Jawaban 4452mot
titik (7, 3) R[O, 45°] (x'. y')
x' = x cos 45° - y sin 45°
x' = 7 (½√2) - 3 (½√2)
x' = 7/2 √2 - 3/2√2
x' = (7/2 - 3/2) √2
x' = 4/2 √2
x' = 2√2
y' = x sin 45° + y cos 45°
y' = 7 (½√2) + 3 (½√2)
y' = (7/2 + 3/2) √2
y' = 5√2
[tex] \binom{ {x}^{l} }{ {y}^{l} } = \binom{cos \: 45 \: \: \: \: \: \: \: \: - sin \: 45}{sin \: 45 \: \: \: \: \: \: \: \: \: cos \: 45} \binom{7}{3} \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{ \frac{1}{2} \sqrt{2} \: \: \: \: - \frac{1}{2} \sqrt{2} }{ \frac{1}{2} \sqrt{2} \: \: \: \: \: \: \: \frac{1}{2} \sqrt{2} } \binom{7}{3} \\ \binom{ {x}^{ l} }{ {y}^{l} } = \binom{ \frac{7}{2} \sqrt{2} - \: \frac{3}{2} \sqrt{2} } { \frac{7}{2} \sqrt{2} + \frac{3}{2} \sqrt{2} } \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{ \frac{4}{2} \sqrt{2} }{ \frac{10}{2} \sqrt{2} } \\ \binom{ {x}^{l} }{ {y}^{l} } = \binom{2 \sqrt{2} }{5 \sqrt{2} } [/tex]
maka bayanganya (2√2, 5√2)